NERSC Overview

NERSC New User Training August 13, 2015

NERSC

- National Energy Research
 Scientific Computing Center
 - Established 1974, first unclassified supercomputer center
 - Original mission: to enable computational science as a complement to magnetically controlled plasma experiment
- Today's mission: Accelerate scientific discovery at the DOE Office of Science through high performance computing and extreme data analysis
- A national user facility

Today's Talk

 A brief introduction to the Center and some simple rules for getting work done at NERSC.

Trajectory of an energetic ion in a Field Reverse Configuration (FRC) magnetic field. Magnetic separatrix denoted by green surface. Spheres are colored by azimuthal velocity. Image courtesy of Charlson Kim, U. of Washington; NERSC repos m487, mp21, m1552

You Are Not Alone!

A calculation of the selfgenerated plasma current in the W7-X reactor, performed using the SFINCS code on Edison. The colors represent the amount of electric current along the magnetic field, and the black lines show magnetic field lines.

Image: Matt Landreman

NERSC: Mission Science Computing for the DOE Office of Science

Diverse workload:

- 4,500 users, 700+ projects
- 700 codes; 100s of users daily

Allocations controlled primarily by DOE

- 80% DOE Annual Production awards (ERCAP):
 - From 10K hour to ~10M hour
 - Proposal-based; DOE chooses
- 10% DOE ASCR Leadership
 Computing Challenge
- 10% NERSC reserve
 - NISE, NESAP

Simulation of density-driven flow for CO₂ storage in saline aquifers. Shown is a snapshot of the CO₂ concentration after onset of convection overlayed on the AMR grid. Image courtesy of George Pau and John Bell (LBNL). Repo mp111

DOE View of Workload

NERSC 2013 Allocations
By DOE Office

ASCR	Advanced Scientific Computing Research
BER	Biological & Environmental Research
BES	Basic Energy Sciences
FES	Fusion Energy Sciences
HEP	High Energy Physics
NP	Nuclear Physics

Science View of Workload

Science View of Usage

NERSC 2014 Usage by Scientific Discipline

What Role Does NERSC Play?

You Will Be Successful!

Collision between two
shells of matter ejected
in two supernova
eruptions, showing a
slice through a corner of
the event. Colors
represent gas density
(red is highest, dark blue
is lowest). Image
courtesy of Ke-Jung
Chen, School of Physics
and Astronomy, Univ.
Minnesota. Repo m1400

2014 Science Output

Microscopy Microanalysis

2,029 refereed pubs
18 iournal covers

ACTINIDE RESEARCH QUARTERLY

NERSC Users Report >2000 Publications / Year

- Make sure you <u>acknowledge NERSC</u> in publications; please use "official" acknowledgement
- https://www.nersc.gov/users/accounts/useraccounts/acknowledge-nersc/
- This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
- Science highlights sent to DOE each quarter.
 - Send us links to your publications.

Magnetic field lines from HiFi simulations of two spheromaks. NERSC repo m1255 Image courtesy of Vyacheslav Lukin (NRL)

NERSC Systems Today

Science

System Choices

- Edison: fast processors; fastest interconnect; best for scaling to large core counts; higher NERSC machine charging factor
- Hopper: previous generation processors; excellent scalability; lower charge factor
- Cori: newest system, Phase I online later this year

Simple Rules for Success

- Use our web site; use "Search..."
- Cray systems are not "typical" clusters, pay attention to differences
- Be kind to your neighbor users
- Back your stuff up
- Pick the right resource for your job and your data
- Use batch system effectively; pay attention to systemspecific syntax and policies
- Use your allocation smartly
- Pay attention to security

Chemistry & Materials Applications

NERSC compiles and supports many software packages for our users.

 More than 13.5 million lines of source code Compiled, Optimized, and Tested

Molecular Dynamics

NERSC User's Group

- Get involved. Make NUG work for you.
- Provide advice, feedback we listen.
- Monthly teleconferences with NERSC, usually the last Thursday of the month, 11:00 AM to noon Pacific Time.
- Executive Committee three representatives from each office and three members-at-large.
- Community!

Rule # 4: Expect Consistency. And Change.

Molecular Dynamics simulation snapshot showing water molecules (red and white), and sodium, chloride ions (green and purple) encountering a sheet of graphene (pale blue, center) perforated by holes of the right size, with water passing through (left side), but sodium and chloride being blocked.

Change and Consistency

- NERSC will be physically moving to a new facility in 2015.
- Carver will retire September 30, 2015.
- Hopper will retire December, 2015.
- NERSC-8 (Cori)
 - Phase 1 Haswell late summer 2015
 - Phase 2 Knights Landing summer 2016
 - Disruptive change
 - Codes likely will run, but will need to be modified to achieve good performance
 - NERSC will help users make this transition.
- Edison will remain available for codes that cannot transition to NERSC-8

Thank you and welcome to NERSC!

Generic Multiprocessor Architecture

